If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+76x+336=0
a = 4; b = 76; c = +336;
Δ = b2-4ac
Δ = 762-4·4·336
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-20}{2*4}=\frac{-96}{8} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+20}{2*4}=\frac{-56}{8} =-7 $
| 6+11x-10=0 | | 8x-8=-7x+37 | | Y=4.9t^2-14t | | 4x+48=10x+20 | | -v/3=52 | | f(-1)=8(-1) | | 20h-19h=19 | | (2x-10)+(3x+40)=180 | | 5/3x=40/3 | | 2(5-4x)=9(x+10)-7x | | 6-(x+2)=3(x-4) | | 2(x^2+3)=98 | | 2x+9=3(x-7) | | 52.50+2x=1.75x | | 57=-v/5 | | 5/3x=131/3 | | 3(5x+5)=37-7x | | (7x+4)=(8x-4) | | 6/8x-4=-72 | | 3+22+2x=x+17 | | 40+x=2x+10 | | -2=u+6 | | (10x+10)=(12x-4) | | 9x+7=16x+23 | | 8.1x+10-3.6x=2(2.25x+5) | | 6x-7=10x-7 | | 2x^2-14x=21 | | X+12x+25=90 | | 7+x-4=5 | | m-4/5=-2/5 | | 3/8y=15/8 | | 2000=x+1/x |